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A revers~le system vdth a small parameter tt is considered. When tt = 0 the generating system has a periodic motion, symmetric 
to a fixed set of the system automorphism. It is shown that this periodic motion is continued with respect to a small parameter 
in the Poincar6-unisc lated case when certain conditions are satisfied only on the generating system. Symmetric periodic solutions 
are constructed bo~c for a non-resonant and for a resonant system. In the plane unrestricted three-body problem the small 
parameter is chosen r.o be the quantity characterizing the interaction between two bodies chosen from the three. It is shown that 
in this problem there are solutions in which the body moves along curves close to circles. The problem of the applicability of the 
result to a sun-earth-moon type is discussed. 

1. T H E  L Y A P U N O V - P O I N C A R I ~  M E T H O D  I N  R E V E R S I B L E  S Y S T E M S  

Consider the reversible system 

u" = U(u, ~) + ttUl(ll, u, ~, t) 

~" = V(u, ~) + gtVl(gt, u, ~, t), u e R I, ~ e R n (l > n) (1.1) 

where ~t is a small parameter,  U1 and Vl are 2x-periodic functions of  t or  are independent of t, while 
M = {u, v : v = 0} is a fixed automorphism set. Suppose that, when gt = 0, system (1.1) admits of  2nk- 
periodic (k ~ N) motion u ffi q~(t), v = O(t), which intersects the set M at the instant of  time t = 0 (mod 
2x). We make the replacement 

u = ¢p(t) + p, ~ = ¥ ( t )  + q 

Then the equations for p and q 

p" = A(t)p + B(t)q + P(p, q, t) + ~tUl(gt, ¢p(t) + p, ¥(t)  + q, t) 

q" = C(t)p + D(t)q + Q(p, q, t) + ~tVl(~t, q~(t) + p, ¥(t)  + q, t) (1.2) 

where we have denoted terms higher than the first order of p and q by P and Q, are reversible [1], while 
the fixed automoJ~hism set of system (1.2) coincides with the hyperplane q = 0. The right-hand sides 
of Eqs (1.2) are 27rk-periodic functions of t. 

When tt = 0 system (1.2) has the solution p = 0, q ffi 0. We will formulate the problem of  the existence 
of  2r~k* periodic solutions of system (1.2) (where k* is a multiple of  k) when tt ~ 0. 

Suppose r~ are characteristic exponents of  the linear system 

p" = A(t )p  + B(t)q,  q ' =  C(t)p + D(t )q  (1.3)  

Then when n =: I and ~ ~ iv~k* (v ~ Z) Poincar6's theorem [2] solves the problem. 
The case of  zero ~ with simple elementary divisors was investigated in [3]. The solution obtained 

requires the construction of  a system of  independent periodic solutions corresponding to the multiple 
zero root  of  the s3~tem conjugate to (1.3), and the inclusion for the analysis of  the terms in (1.2) which 
depend on the small parameter.  

It turns out that, for the reversible system considered, the problem has a solution that is more complete 
and convenient for applications. 

tPrikl. Mat. Mekh. Vol. 59, No. 1, pp. 38-50, 1995. 

35 



36 V.N. Tkhai 

Lemma 1. The linear reversible system (1.3) has at least l - n zero characteristic exponents and simple elementary 
divisors correspond to them. 

Proof. In view of the reversibility of system (1.3), in addition to the solution p ffi (0*(t), q ffi ~*(t), we also have 
the solutions 

p =q~*(t) + q~*(--t), q = ¢*(t) - ¢*(..-t) (1.4) 

p = ~o*(t) - q)*(--t), q = ~*(t) + ~*(-t) (1.5) 

Since in (1.4) we have q(0) ffi 0 and in (1.5) we have p(0) = 0, we can always construct a fundamental system 
of solutions, in each of the solutions of which p is an even (odd) function of t while q isaan odd (even) function of 
t. In view of the uniqueness, the fundamental system with the unit matrix E of the initial conditions has the form 

S(t)=~ p+(t) P-(t)  I S ( 0 ) = E  
Uq-(t) q+(t) ' 

where the plus (minus) denotes a matrix of even (odd) functions. 
Suppose G is a characteristic matrix. Then S(kx) = GS(--k~), and the characteristic equation det (G - pE) -- 0 

is equivalent to the equation det(S(k~) - pS(--/oc)) = 0. Also, the matrix S(kx) - S(--k~) has at least I - n zero 
eigenvalues with simple elementary divisors. 

Corollaries. 1. System (1.3) can be reduced by means of a non-degenerate linear transformation to 
the following form 

~" = 0, 1~" = A * ( t ~  + B*(t)~ ,  ~" = C * ( t ~  + D*(t)~ 

(/~ ¢ Rt-~; ~q, ~ ~ R") with automorphism t -~ - t ,  (6, ~q, ~) ~ (6, "q, -~). 
2. The linear system 

p" = A(t)p,  A( - t )  = -A( t ) ,  A(t  + T) = A(t) (T ~ 0); p ~ R ~ 

(1.6) 

is stable and has I integrals T-periodic with respect to t and linear with respect to p. 

Lenuna 2. Suppose gl, • • •, r ~  ±l~x÷l, . . .  , -4- w~n are the remaining characteristic exponents of  system 
(1.3) of  multiplicity [~1, • • •,  fire, respectively, where ~:1 = . . .  = r~a, r~+l ~e 0 . . . . .  Z,n ~ 0, and each of 
the exponents ): is written as many times as there are groups of  solutions corresponding to it. Then 
system (1.3) becomes 

Tl'l~ = 0, ~'l,, = ~I~, ~'l.v = )CvTh,v (1.7) 

n';.s = ~i-I~, ~'~i.,= ~+l.~ + ~,v 
~'~,, = n~.,, ~'~+~.~ = K~+~.~ + ~j.~ 

(i = 2 ..... [~J2; j = 1 ..... [~v - 1; s = 1 ..... a ;  v = a + 1 ..... m) 

with one of  the automorphisms: (1) t --> - t ,  ~ - )  6, ~1 -"> ~1, [ -'> -~; (2) t -~ --t, ~ --, 6, 11 -> _11, [ __) [,. 

Proof. The truth of the lemma follows from Lyapunov's theorem [4] which states that a linear periodic 
system can be reduced to a system with constant coefficients and preserves [1] the property of 
reversibility, and also from the corollary formulated above. 

Theorem 1. Suppose system (1.2) in the variables 6, ~1, g possesses the automorphism t --> - t ,  (6, ~1) 
-> (6, "q), ~ --> -~  and the part of it that is linear in 6, "q, ~ when St = 0 is identical with (1.7). Then,  if 

~ ±iN/k* (N -- 1 , . . . ,  k*), for sufficiently small Ix system (1.1) has I - n + 1 families of 2xk-periodic 
solutions, parametric from the initial conditions and the parameter Ix, symmetric to the fixed set M of 
automorphism of  the system and which becomes a generating family u = (0(t), v = O(t) when Ix = 0. 

Corollaries. 1. There are always 2r&-periodic solutions if, in the variables, 6, "q, ~, the automorphisms 
has the form t --> -t ,  (6, "q) --> (6, lq), ~ --> --~ and there are no imaginary numbers among the numbers •v. 



Non-linear oscillations of  reversible systems 37 

2. If system (1.3) has not more than 1-n  zero characteristic exponents, 2xk-periodic solutions exist 
when Kv ~e _+ iN~k* (IV = 1 . . . . .  k*).  

Note. When dete:nnining the form of the automorphism of system (1.2) written in ~ 11, [ variables, it is useful 
to use the first integrals of the generating system. 

Proof. The existence of 2rdc*-p~0 dodic motions can be established from the Heinbockel-Struble theorem 
[5]. If ~(~0, ~10, g0, g, t), ~l(~°,0-q, go, ~ t), ~(~o, ~10, g0 Ix, t) is the solution of system of (1.2) with linear 
part (1.7) and initial values ~ ,  lq °, ~o, then the sufficient conditions for it to be 2rdc*-periodic are 

C ° = 0, ~(~0, vl0, C0, St, xk*) = 0 (1.8) 

If the system of 2n functional equations in .q0, [0 obtain is compatible, a periodic solution exists. Then 
11 °, ~ are found as functions of  G °, g and the 2r&-periodic solutions form I - n  + 1 parametric families. 

In the first approximation in ~0, .q0, ~0 ignoring terms which depend on ix, we can set up system (1.8) 
by integrating (1.7). In this approximation (1.8) is split into m subsystems corresponding to the character- 
istic exponents from one group of solutions. Hence, the functional determinant of  system (1.8) calculated 
for 6 ° = 0, lq ° = 0, ~0 = 0, g = 0 is equal to the product of m functional determinants. As in Poincar6's 
theorem, for Kv ~ 0 (v = a + 1, . . . ,  m) the determinant is non-zero when Kv # +-iN~k* ( N  = 1 . . . .  , 
k*). As regards the zero exponents, the corresponding subsystem has the form 

_(v). + 
. . . .  0 . . . . .  . . . .  0 

) + . . . .  0 ,  

3 3 
Y- ..(s) + Y c(S) 3!~il ~ 2, +Yc}~)+c(2[)+ . . . .  0 

. , . . . . . , . . . . , . . . . . . 

"l~"-~ c}~ ) 4 y~s-~ ~(s) . . . .  (,) c (s) . .+ - 0 
([3s -1)[ ([3s -2) !  ~12 . . . . .  PI.I~,/2 + 2,p,,, "'" 

(C are the initial values of .q0, ~0, while the terms which are omitted in front of the equality sign are 
non-linear in c or depend on g) and its functional determinant is obviously non-zero. 

Theorem 1 is proved. When using it to investigate specific problems the following formulation is often 
preferable. 

Theorem 2. If among the roots a of the equation det Hq+(2r&) - ale H = 0 there are no roots equal to 
cos (2xkN/k*), then, for sufficiently small IX, system (1.2) has 1 - n + 1 families of  symmetric 21rk*-periodic 
solutions, parametric from the initial conditions and the parameter g, which turn into a generating family 
p = 0, q = 0when  g = 0. 

Proof. Suppose p is the root of  the characteristic equation. Then 2a  = p + p-1 is an eigenvalue of 
the matrix S(2r&) + S(-2xk). If/~> n, then all p, with the exception o f / -  n, equal to one, are determined 
from the equation. 

p2 _ 2a ,  p + 1 = 0, detllq+(2~k) - a,Ell = 0~ (s = 1 ..... n) 

which proves the theorem. 

Note. To determine the characteristic indices of the linear reversible system it is sufficient to construct only n 
partial solutions. This is particularly convenient when n = 1. 

2. A N O N - R E S O N A N T  O S C I L L A T I N G  S Y S T E M  

We will investigate the problem of oscillations in the system 
n 

ns =it°sns  +i~s  Z C, jnj~j "}'~'/s(~,n,~, t) 
j=l 

j= l  

(2.1) 
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with right-hand sides that are 2~-periodic in t or independent of t and with automorphism (t, 11, fl) --+ 
(-t, n, ~). 

Here cos, C~j(oa s > 0) are real constants and the bar indicates a complex-conjugate quantity. 
This problem arises when investigating the small oscillations of a reversible system in the neighbour- 

hood of  zero when there are only pure imaginary characteristic exponents and there are no resonances 
up to the fourth-order inclusive, and, moreover, is of independent interest. All the conclusions will hold 
when there are additional equations in the variable ~ having the same meaning as in (1.7). 

When It = 0, system (2.1) only allows conditionally periodic motions 

r l s = ~ s e  i°', ri=O, O s = t 0 s + 2 ~  Csj ~ ( s = l  ..... n) 
j=l 

Among these motions there are 2r&-periodic motions corresponding to a denumerable set of points 
with respect to the initial values of r 

k,lk, 
j = l  

In the neighbourhood of the chosen periodic motion we put 

_-0 ie~ ~rO eiOs 11.~ =~/~ e ( l+x~),  ~., =~  s ( 1 + ~ )  

The equations for xs, ~ then take the form 

t l  

x', = 2i ~, Csjrj°(xj + L ) + . . .  (s = 1 .... ,n) (2.2) 
j --I  

where the omitted terms are of  order not less than the first in x, i or depend on It and are 2r&-periodic 
functions of t. In real variables p, q (x = p + iq), system (2.2) takes the form 

pj = O+ .... q'~ = 2 ~ Csjrflpj+... (2.3) 
j---I 

Since the set of fixed points of  the automorphism for (2.3) coincides with the hyperplane q = 0, the 
sufficient condition for 2r&-periodic solutions, close to the generating solution, to exist in (2.1) is det 
IIc,Pll 0. In fact, in this case the written part of  system (2.3) is a special case of system (1.7). 

The generating system also has other periodic solutions. In fact, when It = 0 in (2.1) the hyperplanes 
1l, = fls = 0 are integral. Hence, ifrlv+l . . . .  11n = 0 in the generating solution, the sufficient conditions 
for a 2~k-periodic solution to exist in (2.1) are 

v 
,=, , + 2 C jrO , l_k, o V 

k e N ;  kr , , l~Z  ( ~ = 1  ..... v; ~ = v + l  ..... n) 

(2.4) 

Theorem 3. When (2.4) is satisfied, system (2.1) has a 2r&-periodic solution for sufficiently small It, 
identical with the generating solution when It = 0. 

Coro//ary. When Ca*  0 and there are no resonances up to the fourth-order inclusive, Lyapunov families 
of periodic motions exist for almost all initial conditions with the exception of a denumerable set of 
points in r °. 

In fact, in the autonomous system (2.1) when Cn ~e 0 any solution of the generating system in the hyper- 
plane 112 = .~. ~1~ = Ois periodic if o~ = to1 + 2Cnr ° * 0, which is satisfied for small r °. The condition 
l(tal3 + 2C1~1 ~)  ~e kl(O~; kl, I e Z distinguishes a denumerable set of  points ry for which the periodic 
motions are not continued with respect to the small parameter g at least according to the theory from 
Section 1. 
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3. T H E  F O U R T H - O R D E R  R E S O N A N C E  4¢0 = N, N ¢ N 

For simplicity we will consider the ease of  two variables I = n = 1 in (1.1). It is easy to generalize 
the results to the ~ase of  arbitrary numbers I and n (l ~> n) though it leads to more lengthy calculations. 

We can write rile system in complex-conjugate variables 11, fl in the form [1] 

11" = i[e0 + Ci.0rl~ + C, . l  (rl~) -I (~ e~t)4 ]11 + laH(IX, 11, ~, t) (3.1) 

where the function H is 2~-periodic in t, and Ci.0, Cq.1 are real constants. 
We make the replacement 11 = z e/mr and fl = ze -/mr. We then have 

z" = i(CI,0 z2 ~ + C_l,tE 3) + ... (3.2) 

where the unwritten terms are of the order of  Ix and are 8~-periodic functions of  t (we assume that 
N = 1 below). It is convenient to analyse the generating system obtained from (3.2) when Ix = 0 in 
polar coordinates r, 0: z + ~/(r)e/el, 0 = 401. We have 

r" = 2C_tjr2sin 0, 0" = 4(CI,o + C-LlCOS 0)r 

Applying the eJctension [1] of  the Heinbockel-Struble theorem [5] to this system we can conclude 
that when [ C1,01 > I (7-14 [ all the motions are periodic. We obtain motions along ellipses 

r(O) X* , O" =X* =4r0(Ci .0+Cq, ,cos00),  E= C-l'l (3.3) 
4Ci,0 (1 + coos0) Cj, 0 

(r0, 00 are the initi~d values of the variables r, 0), where, without loss of  generality, we can assume 00 = 0. 
Note that the ellipses intersect the fixed set (sin 0 = 0) at two points. 

Among the motions (3.3) we distinguish 8nk*-periodic motions (k* ¢ N) with respect to the variable 
t, for which X'k* := s ~ Z. The "amplitudes" of these motions can be found from the relation 

4ro(Ct.o + Cq,t) = s/k* 

If k* = 1, then for any s ~ Z we have motions that are 8~-periodic with respect to t for which the 
"amplitudes" can 1~ as large as desired (as ]s] increases), be~nning from the value 

=lC,,o + C_,,,I-' 
Hence, oscillatkms with th.e resonance frequency ~ occur outside a bounded region contained inside 

the ellipse (3.3) with r0 = r ~  'n. As regards subharmonic oscillations (k* = 2, 3 , . . . ) ,  their amplitudes 
may be as small as desired as k* increases. 

We will investig.'~te under what conditions the periodic motions (3.3) can be continued with respect 
to the small param,,ter IX. To do this we putz  = ~/(r)(0)exp(i01)(1 + x) in (3.2). Then, in the real variables 
p, q(x = p + / q )  we obtain 

dp/dO = 2~C-t,1(P sin 0 - q cos 0)r2(0)~ * + ... (3.4) 
dp/dO = 2C_1.0[(1 + e cos e)p + ¢q sin 0]r2(0)/k * + ... 

According to 3qaeorem 1 the absence among the characteristic exponents __.1¢ of  this system of 
exponents equal U~ iN~(4 Is I), N ~ N guarantees the continuation of  the 8rdc*-periodic motion with 
respect to IX. One can determine !¢ by constructing in e e [0, 8~lsl]  one partial solution with initial 
conditions, for ex~tmple, p = 0 and q -- 1. However, the problem will be solved here using integrals of  
the generating system. 

The generating .,;ystem--(3.2) with IX = 0---has the energy integral 

V = 2Cl,o(Z~) 2-1- C_1,1(2 '4 4- z "4) -- const 

In the neighbota'hood of  the periodic motion (3.3) the integral can be written in the form 

[(Ci.0 + C-la c o s 0 ) p -  C_LlqsinO)r2(O)+ . . . .  h(eonst) (3.5) 
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where terms higher than the first order in p and q are omitted. Integral (3.5) enables us to make the 
new variable h instead of the variable p in (3.4). We obtain the system 

dh/dO = + .... dq/dO = 2[h + 2Cl,o~q sin 0]/~.* + ... 

with automorphism 0 ~ --0, h ~ h, q ~ -q. It is obvious that this system satisfies all the conditions of 
Theorem 1. 

Theorem 4. Suppose that the condition I c ,0l > I c- ,11 is satisfied in system (3.1). Then, for sufficiently 
small ~t, system (3.1) has a denumerable set of 8r&*-periodic motions close to the motions (3_3). The 
"amplitude" r0 of the motions with the resonance frequency will then be a multiple of r~ m. 

Note. Taking into account the fact that when [ C1,01 ~< I C_1.11 the motions of the generating system are not periodic, 
we can assert that all the periodic motions that are 8r~k*-periodic in t can be continued with respect to the small 
parameter. 

4. S E C O N D - O R D E R  R E S O N A N C E  2xo=N,N¢ N 

We will consider the problem of the periodic motions of the following system 

=iorQ+i[C,.o~t_ - + ~  -3 -4~ t._l.2r I e + C2.1113e 2/t°t + C0._111~2e-2~]+~-I(!1,.1],~,I) r I (4.1) 

(the complex-conjugate equation is omitted) with a function H which is 2~-periodic in t and with an 
automorphism (t, 11, fl) ~ (t, ~, rl), where Csj are real constants. We will make the replacement z = 11 
exp(-/~).  The fight-hand sides of the system obtained will then be 4~-periodie in t (for brevity we assume 
N = 1) and in polar coordinates r, 0(z = ~/(r) exp(i01), 0 = 201) for ~t = 0 we have 

r" = 2(C_ s in0+ C_I, 2 sin 20)r 2, 0" = 2A(0)r (4.2) 

A(0) = Cl, 0 + C+ cos0+ C_I, 2 cos20, C~ = CO, 1 4" C2,1 

The motions of this system will be periodic [1] if 0" ~ 0 when r ~ 0 and for any 0. Hence, the necessary 
and sufficient conditions for periodicity are 

D = C+ 2 - SC_I.2C.>0, IIC+I-~-DI< 4 C~-~_1, 2 , C. = C,, 0 - C_,. 2 (4.3) 

In this case the relationship r(0) is found from the equation 

d_.r_r = (7_ sin 0 + 6"_1, 2 sin 20 dO = f(0)d0 
r A(0) 

Hence 

e 2~ 
r(O) = r o exp I f(O), I f(O)dO = 0 

o 0 

We obtain the relationship O(t) by integrating the relation 

0 
rodt = ff~ (O)dO, f~ (0) = 2A(O)e×p I f(O)dO 

o 

In view of the 2g-peri~licity of the function fl(O) we obtain 

rot = [gj0+g2(0)], gl = const, g2(0+ 2~) = g2(0) 

Hence it follows that when the condition r0k* = gls(k* ~ N, s ~ Z) is satisfied the motions will be 
4~-periodic in t. Hence, as in the case of fourth-order resonance, the amplitude of the vibrations with 
resonance frequency (k* = 1) is a multiple of r ~  = gl, while the subharmonic vibrations can have as 
small an amplitude as desired. 
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Now, as in the c~tse of  fourth-order resonance, we put z = 4(r(0)) exp(i01) x (1 + x), x = p  +/q. We 
then obtain the s~;tem 

dp/dO = [C_L2 (psin 20+ 2qcos 20) + C~_ (p sin 0 - q cos 0)] / A(0)+... 

dq/dO = [Cl.op+ C L2 (pcos20 - 2qsin 20)+ C+p cos 0 - C_qsin 0)]A(0)+... 
(4.4) 

The unwritten tetras are of order higher than the first ofp  and q or depend on Ix and are 4n Is I-periodic 
functions of 0 (4~0r*-periodic functions of t). 

Theorem 5. Suppose conditions (4.3) are satisfied in system (4.1). Then, for fairly small Ix Eq. (4.1) 
has a denumerable set of motions, 4r&*-periodic in t (k* ~ N), if the characteristic exponents of system 
(4.4) are not equal[ to +_iN/(2Jsl),N~ N. 

Note. When C+ ffi 2C_ the generating system has an energy integral and its pedodic motions are continued with 
respect to the small parameter. 

5. 1:3 R E S O N A N C E  

Omitting the associated non-resonant subsystem, we will consider the problem of the periodic motions 
of the system 

1]i = i(031 + AI ! [ 11112 +AI2111212 )111 + iB2~23 + IXH1 (IX, 7,1]) 
(5.1) 

112 = i(-¢°2 + A2111]! 12 +A22111212 )112 + iB2~1112 + ~/2(IX,~,l]) 

whereAjk, Bj, ~ are real constants, ~ > 0, oh = 3a>2, and the complex-conjugate group of equations is 
omitted.  

The generating :~ystem, obtained from (5.1) when ~t = 0, always has a periodic solution in which 

1]i = i(031 + All11]t 12 )1]1' 112 = 0 (5.2) 

By Theorem 3, system (5.1) for small IX has periodic solutions close to (5.2). It also follows from 
Theorem 3 that periodic motions exist close to the solutions 

111 = 0, 1]~ = i(-032 + A22111212 )112 

ifB1 = 0 .  
It turns out that other "resonant" periodic motions are also possible in system (5.1). To.establish this 

fact we convert the, generating system to polar coordinates r, 0: ~ = q(rj) exp (i0j), flj = q(~) exp (-/0j) 
(j = 1, 2). We obtain 

rj = 2Bj sin0ril/2r23/2 ( j  = 1,2) 

0i = 031 + Allrl + A12r2 + Blr1-112r312 cos0  (5.3) 

0~ = -032 + A21r 1 + A22r2 + B2rll/2r 1/2 Cos0, 0 = 01 + 30 2 

where the last two equations reduce to a single equation for the variable 

O" = Air 1 +A2r  2 +(Blrl-I/2r 3/2 + 3B2rl/2rl/2)cosO, Aj = AI, j +3A2j.  

A qualitative investigation of the system of equations obtained for rl, r2, 0 [6] enabled, in particular, all 
cases of the existe~lce of periodic motions to be established. Suppose BIB2 > O, for example, BI~ > 0. 
Then (5.3) has a pm-ticular solution described by the equations 

r'=2Br2sinO, O'=(A+4BcosO), 1)=Bjr ( j = l , 2 )  (5.4) 

A =AIB I +A2B 2, B=Bll/21~2/2 
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When the condition IA [ > 4 ]B [ is satisfied all the solutions of system (5.4) will be periodic motions 
along ellipses 

ff 1+~ B 
r (0)=r°  l + e c o s 0 '  e = 4 A  

where r 0 is the value of r when 0 = 0. In 11, fl variables the motion, generally speaking, will be conditionally 
periodic, and 

2 
0"t = to1 + (al + B cos 0)r, 0"2 = -to2 + (a2 + B cos 0)r, a / =  ~=1 AjkBt 

and the dependence of  0j on 0 is given by the relations 

0,.2 =+- (5.5) 
Arogl+e 

H e r e ) ~ ( 0 )  i s  a 2n-periodic function of 0, and ~t*, 1~*, y* are the average values over a period of the 
functions 

, 1 2~ dO 

=2-n~ ! 41+ecos0 
[3"= 1 2f dO , _ ~ _ 1  2f cosdo 

' ~ o l + e c o s O '  "/ - 2~ o l+ecosO 

Hence, the solution will be periodic if the following condition is satisfied 

, (It) ! 2IX * a l , 2 ~ *  + BT* 
, , J ¢  

where k and I are integers, excluding zero, and the period with respect to 0 is equal to 12nk/(to*i/) I. 
Note also that the periodicity condition is satisfied irrespective of  the initial value of  ro of  the generating 
solution if k + 31 = 0. 

To apply Theorems I and 2 to the established elliptic generating solutions we change to the variables 
pj and qj in (5.1) using the formulae 

~]j = ~ e l a J ( l + x j ) ,  xj =pj +iqj ( j = l , 2 )  

where the relationship 0j(0) is given by (5.5). We obtain 

dpl E(3p2 - P l ) s in0+  (ql + 3q2)cos0 
dO 4(1 + e cos 0) 

dqt = e 2(AIIBIpl + A12B2P2) ÷e (3p2 - P l ) C ° S 0 -  (ql  + 3q2)sin0 +... 
dO A(1 + e cos0) 4(1 + e cos 0) 

(5.6) 

dP2 = E (Pl - P2 ) sin 0 - (ql + q2 ) cos 0 +... 
dO 4(1 + e cos0) 

dP2 _ 2 ( A21B I Pl + A22 B2 P2 ) ~_ £ (Pl - P2 ) cos 0 + ( ql - q2 ) sin 0 +... 
dO A(1 + e cos0) 4(1 + e cos 0) 

The unwritten terms are of  order higher than the first in p, q or depend on ~t. 
It can be seen that when e = 0 the part in (5.6) that is linear in p, q and free from B is independent 

of 0, the characteristic equation has two pairs of zero roots, each from one group of  solutions, and the 
automorphism satisfies Theorem 1. Consequently, when e = 0 system (5.1) has a denumerable set of 
periodic motions close to circular for sufficiently small Ix. 

To determine the characteristic indices when e ~ 0 we will use the integrals [6] of the generating system 

V=BI~2q2-BI~Iql 

W = AIB21"qll 4 +A2B~I11214 +2BIB2(~ITI23 + ~1~ 3) 



Non-linear oscillations of reversible systems 43 

In the neighbourhood of the elliptic generating solution the integrals take the form 

Q~I - p2)r(0) + . . . .  hi 

{AI BI Pl + A2 B2P2 + B[(pl + 3P2 ) cos 0 - (q, + 3q 2 ) sin 0]} r 2 (0)+ . . . .  h 2 

where hi and h 2 are arbitrary constants. It can be shown that these integrals are solvable with respect 
top l  andp2 provided the condition IA I > 4 IBI is satisfied. Hence, in system (5.6) we can take the new 
variables hi and h~. instead of the variablespl andp2. As a result it turns out that the linear system has 
two pairs of zero elaaracteristic exponents, each from one group of solutions, and we obtain, apart from 
terms that are linear and free from IX 

h'! = 0 + .... h'2 = 0 + ... 

In the new variables hi, q- (j  = 1, 2) the automorphism has the form t ~ - t ,  h -~  h, q ~ - q  and all 
the conditions of Theorem 1 are satisfied. 

Theorem 6. If IA [ > 4 IBI, in system (5.1) for sufficiently small Ix there will always be a denumerable 
set of "resonant" reriodic motions close to elliptic and coincident with them when Ix = 0. 

Note. The preseno~ of two independent integrals enables all the periodic solutions established in the generating 
system [6] to be extended with respect to the small parameter. A similar situation occurs for an arbitrary fourth- 
order m-frequency resonance because in this case the generating system has m independent integrals [7]. 

6. P E R I O D I C  M O T I O N S  IN T H E  U N R E S T R I C T E D  
T H R E E - B O D Y  P R O B L E M  

We will consider the plane unrestricted three-body problem--the problem of the motion of three 
mass points Po, P1 ~xtd P2 with masses Mo, M1 and M2, which mutually attract one another in accordance 
with Newton's law, and which always move in the same fixed plane. The Routh function of the problem 
was obtained in [8] and the following were chosen as the positional coordinates: r - - the square root of 
the polar moment of  inertia, y - - the  natural logarithm of the ratio of the two sides PoP i and PoP2 of 
the triangle PoP1P2, and y - - t h e  angle between these sides. The cyclic variable ¢b is the angle measured 
from the straight line PoP1 from a certain fixed straight line in the plane of the triangle PoP1P 2. We have 

R =  r "2 +r2F2 + F  I - ~2~ ÷ i F  0, F 2 = ~l~-2(y "2 + ¥ . 2 )  (6.1) 
4r  ~ r 

El = - [  ~S-i { IX3 ( ¥" Cos W + y" sin W) - (IX2 + IX3 ) ey ~/" } 

Fo = fM $.~fS72{IX,e y/2 +l.t2e -y/2 +ix3(e: +e-Y - 2cos¥)  -'/2 } 

S = Ix~e -y + IX2 ey + IX3 ( ey + e-y - 2 cos ~)  

IXi+j = MiMj / M 2 ( i , j=0 ,1 ,2 ;  i;e j), IX=IX0IXI+IX0IX2+IXIIX2 

where M is the mass of the whole system, ~ is the cyclic constant, and f is the gravitational constant. 
The distinguishing features of this description of the problem are as follows. The new parameters of 

the problem are the dimensionless products ~+j of the masses of the bodies Pi and Pj, and these 
parameters reflect the Newtonian interaction between these bodies. The equation of motion for the 
variable r 

~i 2 1 
2r'" = 2rF 2 + 2r----y - r- T F o (6.2) 

in fact is identical with a fundamental relation in celestial mechanics, namely, the Lagrange-Jacobi 
equation, and expre~es in differential form the fact that the mechanical energy is conserved. Finally, 
the problem is described by Routh's equations, which at the same time are reversible to the replacement 
(r, y, ¥) --> (r, y, -~) .  
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The introduction of new parameters enables us, as the limiting version when Ix3 = O, to obtain the problem 

d e  r2 .~ r2.(y.2+. 2,3S I~ 
dt t $2 y J+ Ss ¥" )~'-y--S'2¥" + l ~ ( e - 3 y / 2 r  2~/2S --e3y#2) = 0  

d (  r2 )+ ~Y" (6.3) 
d, Cs ¥._ 

which corresponds to the ease when there is no interaction between the bodies P1 and P2; these bodies 
move in a rotating system of coordinates only under the influence of the body P0. 

Equations (6.2) and (6.3) allow steady motion in which r, y, ¥" take constant values. In such motion 
the bodies P1 and/'2 rotate with constant angular velocities ¥" and ~" + ¥" around the centre of mass 
of the bodies P0, Pl and P2, and of course, around P~ The angular velocities ~" and ¥" are then related 
by the equation 

2r2~" = 13 - Ix2r2¥" (6.4) 

and the motion occurs along circles. 
All the steady solutions of system (6.2), (6.3) are found from the equation 

,t2( ~t2e -v/2 +Ix2eY/2) ~(Ixl  ey/2 +l~le-Y/2)+ (e -3y/2 e 3y/2) ---- 0 (6.5) 

where x = r2q'/S. 
We will investigate different L~ossible cases. 
1. Suppose the coefficient ofx ~ is zero. The ratio of the distances is then rTJrl = (Ixi/Ix2) 2. If ~l = 0, any 

value ofx is a solution of Eq. (6.5). The ratios of the angular velocities and the periods in this case are 

<o-T- --t J t ry)  - 
Hence, in this steady motion, the bodies P1 and P2 rotate in opposite directions, and Kepler's law is 

satisfied: the square of the ratio of the periods is equal to the cube of the ratio of the radii. 
We will now assume that I~ ~ 0. Then, we obtain the following unique solution of Eq. (6.5) for x 

X ~ 

4 Ix, -Ixl 

Hence, two bodies of  equal mass (Ixl = IX2) move with the same angular velocity along the same circle, 
since for this system ¥" = 0. Suppose (Ixl ~ IX2). Then 

¥.  IX6 _ 1 IX2 _ M2 
~ - =  2IX3[2+Ix,(I Ix,3)] =f(Ix*), Ix* - - Ix l  M I  

If Ix, "~ 1, we have abJtol < 0, and the rotations occur in opposite directions. Here the body P2 lies 
on a circle of larger radius than the body P2. If now Ix, -~ ** we have to2/tth ~ -1/2, and the bodies P2 
and P1 move close to resonance. 

2. Suppose the coefficient ofx 2 in (6.5) is non-zero. Then x are the roots of the quadratic equation 
and have the form 

IXl ey/2 + IX2 e-y/2 :t: (IXl e-y + tt2eY ) 
X = 2(_ix2e_y#2 + Ix2eYl2 ) 

We obtain two families of steady motions: for each value ofy and for any IXl, IX2, which do not make 
the denominator vanish, there are two values of the angular velocity ¥. of the motion of/'2 with respect 
to P1. We calculate 

¥" -- e y12 +IX,e-Y 12 +(e-Y +p.,e y) . -y y. 
~"-7--e_yl2 +ix,e3yl2.I.ix,(l+ix,e2Y) (e +ix,e )= fl(~t,) 
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When St. ~ 0 we have fl(ix- ---> - (1 --. e-ay/2), and when Ix. ~ ** the function fl(ix.) approaches + (1 + 
e-3yr2). Hence it foll[ows that when one of the masses M1, M2 is much greater than the other mass, rotations 
of the bodies are ]~assible both in the same direction and in opposite directions. In the ease when the 
bodies rotate with the same angular velocity we have rl = r2. 

Suppose now that Ix. is a finite quantity, possibly fairly large. We remove the body P2 to infinity. Then 
y ---> ** and ¥'/O" -÷ -1. We obtain a version of the problem which describe the motion of the Moon PI 
with angular vek~:ity O" around the Earth P0- In this version P2 represents the Sun and the angular 
velocity of rotation of the Earth around the Sun is much less than the angular velocity of rotation of 
the Moon around the Earth. 

We will now set up equations in variations for system (6.2), (6.3) in the neighbourhood of the steady 
motions considered. We will not write these fairly length equations explicitly and will merely denote 
their structure 

S~" = -Nr-2~y 

8r" = aS~" + a l l S r  + a128y, 8Y" = bS~" + a218r + a228Y 

where a, b and a# axe certain constant coefficients which depend on the parameters IX1, IX2 and the steady 
motion considered. 

It can be seen that this system has a pair of zero characteristic exponents with one group of solutions, 
while the automorphism of the system satisfies Theorem 1. The remaining characteristic exponents are 
defined as the roots of a biquadratic equation. These numbers depend on the parameters Pl and IX2 
and will be critical in the sense that it is impossible to extend the periodic solution of system (6.2), (6.3) 
with respect to IX3 except for a denumerable set of values of tq and IX2. 

Theorem 7. For a sufficiently small value of the parameter IX3 the plane unrestricted three-body problem 
has "circular" periodic solutions in which the bodies P1 and P2 rotate around Po with constant angular 
velocity (to an aeearaey of the order of IX3) along curves dose to eirdes. The motions of the bodies P1 
and P2 can then be both in the same and in opposite directions. 
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